Is speech data clustered? - statistical analysis of cepstral features
نویسندگان
چکیده
Speech analysis applications are typically based on short-term spectral analysis of the speech signal. Feature extraction process outputs one feature vector per frame. The features are further processed by application-dependent techniques, such as hidden Markov models or vector quantization. Independent from the application, it is often desirable that the feature vectors form separable clusters in the feature space. In this work, we study whether data is really clustered in the feature space and, if so, what is the number of the clusters in typical speech data. We consider different forms of the widely used cepstral features.
منابع مشابه
Clustered ? - Statistical Analysis of Cepstral Features
Speech analysis applications are typically based on short-term spectral analysis of the speech signal. Feature extraction process outputs one feature vector per frame. The features are further processed by application-dependent techniques, such as hidden Markov models or vector quantization. Independent from the application, it is often desirable that the feature vectors form separable clusters...
متن کاملSpeech Emotion Recognition Based on Power Normalized Cepstral Coefficients in Noisy Conditions
Automatic recognition of speech emotional states in noisy conditions has become an important research topic in the emotional speech recognition area, in recent years. This paper considers the recognition of emotional states via speech in real environments. For this task, we employ the power normalized cepstral coefficients (PNCC) in a speech emotion recognition system. We investigate its perfor...
متن کاملImproving of Feature Selection in Speech Emotion Recognition Based-on Hybrid Evolutionary Algorithms
One of the important issues in speech emotion recognizing is selecting of appropriate feature sets in order to improve the detection rate and classification accuracy. In last studies researchers tried to select the appropriate features for classification by using the selecting and reducing the space of features methods, such as the Fisher and PCA. In this research, a hybrid evolutionary algorit...
متن کاملRecognizing the Emotional State Changes in Human Utterance by a Learning Statistical Method based on Gaussian Mixture Model
Speech is one of the most opulent and instant methods to express emotional characteristics of human beings, which conveys the cognitive and semantic concepts among humans. In this study, a statistical-based method for emotional recognition of speech signals is proposed, and a learning approach is introduced, which is based on the statistical model to classify internal feelings of the utterance....
متن کاملVoice-based Age and Gender Recognition using Training Generative Sparse Model
Abstract: Gender recognition and age detection are important problems in telephone speech processing to investigate the identity of an individual using voice characteristics. In this paper a new gender and age recognition system is introduced based on generative incoherent models learned using sparse non-negative matrix factorization and atom correction post-processing method. Similar to genera...
متن کامل